3.3.3 The Information Processing Model: The Mind as a Computer

3.3.3 The Information Processing Model: The Mind as a Computer

Philosophers, psychologists, and educators have frequently proposed metaphors based on the advanced technology of their times to understand the mind. Locke's view of the mind was really a mental chemistry model. Information processing theory sees the mind as a computer analyzing symbolic code data with strings of commands (software programs) through electronic computers with hardware components such as input devices, working memory, and long-term storage. This led to several findings concerning cognition and memory:

  1. Adult memory can be characterized by a multistoried model: A vast amount of unanalyzed information is captured for a fraction of a second (visual) to a couple of seconds (auditory) in a sensory store. Attending to information captures it and moves it to a short-term store before it fades. Children as young as 5 have a similar sensory memory size but less attention capability. Short-term memory, or working memory, holds 7 ±2 bits of information for a maximum of 30 seconds unless some strategy is used to remember it, such as chunking digits, or rehearsing, linking or grouping items in a meaningful way. Children in Western formal schools have deficiencies in these strategies (software programs) until about age 11 or 12, but they can be taught the strategies as young as first grade. Younger children who use these strategies remember more than their peers, but they may not transfer the useful strategies successfully to new settings. Use of such elaborative strategies sends information to long-term storage, which has large, indefinite size, and duration limits.
  2. Elementary school children lack the ability to deploy memory and thinking strategies effectively, even though they would be helpful, because they lack metamemory or metacognition. That is, they may not accurately think about memory or think about thinking the relevant experience to know which strategies to use in which contexts, or find it very difficult to monitor their own thinking processes while using them. However, considerable research suggests that predicting what will come next in a paragraph, estimating how many things they might remember, or the end product of a math problem, helps them learn such skills. Similarly, summarizing, checking one's work, formulating questions about reading passages or other exercises in thinking about thinking promote metacognition, which can be conceptualized as higher order programs about how to deploy strategies and which tend to promote comprehension without endangering calculation or word decoding skills. One useful method is to coax the child to compare the results of using an effective strategy with one that is not effective, rather than the procedures themselves.

The child is seen as a more active learner in the information processing approach, but the major change in development is still the content in the child's head, in terms of meaningful knowledge about concepts, strategies, and metastrategies (strategies for using strategies). Hardware changes less than software and data. In this metaphor, children are also being compared with adults as the standard, rather than taken on their own terms. (For useful summaries of this position, see Klahr & Simon, 2002; Schneider & Pressley, 1997; Siegler, 1996.)