3.3.5 Constructivism: The Child as Epistemologist

3.3.5 Constructivism: The Child as Epistemologist

Covered here so far, are those approaches that stress learning as a gradual filling up of habits, as in empiricism, or data and programs, as in information processing. Also touched on are nativist approaches, which rely on evolution to provide the timing for a gradual unfolding of capabilities. To Jean Piaget (1896–1980), learning was neither the mere acquisition of knowledge nor the unfolding of development. In his constructivist theory, children cannot merely copy and store what their teachers say, but they must act upon the world, first literally, by grasping it and sucking it, then symbolically, through language, and, finally, logically, through a combination of testing, experimenting, questioning, and reasoning, first with the concrete world and then with the formal logic of science and algebra. Piaget's theory is also a hierarchical stage theory. Each stage represents a qualitatively different, progressively more complex and abstract form of thought that is built on the stages that necessarily must come before it. Piaget was concerned not with child development but with the problem of epistemology, the branch of philosophy that deals with how knowledge of the world is constructed inside people's heads. Only by watching children can this process be seen from its genesis, its beginnings. Hence his theory's formal names: genetic epistemology or constructivism.

A baby cannot think aloud as adults do, because he has no language. A newborn has only senses, reflexes, limited motor activity, and the driving force of what might be called curiosity. Babies want to re-experience interesting and pleasant stimulations and gain control over them by repeating and varying certain actions. As they do so, the world becomes predictable and solid, and each baby's sense of self becomes differentiated from external experiences. Early consciousness in this sensorimotor period before the age of 2 is radically qualitatively different from that of older children and adults, and yet babies are still active, curious investigators, expanding through their own interacts with the world. When they have constructed these self-object poles of existence, their perspective radically changes, and they cannot turn back. There is a radical shift in consciousness, passing into the preoperational period: toddlers can imitate actions that have happened in the past, integrating them into play-roles of cook or doctor, in both their play and their stories. They can name the now stable objects and people, and their language use takes off; their artwork has symbols of stick people, cartoon suns, and animals that do not look like what they are, but are labeled that way. These children assume that because they can control the world, other things are in the world because someone made them that way. They do not wait to explain the world until they understand it as adults do; they put forth the hypothesis that the sun shines because “God lighted it with a match!” Thus, the structure of reality is informed by the structure of their current state of knowledge. Each new piece of knowledge is interpreted in that light, not copied from the teacher.

Especially when explaining the major stage shifts of the elementary years (the concrete operational period) and later (formal operations), Piaget focused largely on the development of notions of space, time, objects, mathematics, logic, and scientific thinking. These areas of knowledge have a defined right answer in development, unlike those in the humanities. The details on early 20th-century research on these topics can found in other entries in this encyclopedia, but several general principles that are dealt with here.

  1. Knowledge forms self-organizing structures. Whereas an empiricist might deal with addition and subtraction separately, Piaget suggested that these two mathematical actions form two halves of the same reversible operation, for example: 3 + 2 = 5–2 = 3. Teaching addition and subtraction as separate habits obscures this relationship. Moreover, in a sense, the structure wants to be completed; the child's mind is primed for addition by subtraction, and vice versa.
  2. The child must invent to understand. Through manipulation of counters or mathematical objects, the child discovers these primed relationships through his own activity. However, it is useful to remember that children need not understand to invent; some of their inventions may be wrong, but fruitful.
  3. Contradiction speeds development and widens the “grasp of consciousness”(Piaget, 1976). The self-constructed structures of knowledge are invariably challenged by how the world is: A preschooler who is so egocentric as to think that a doll on another side of a square table sees the same perspective as the child does, is challenged if instead the doll is another child who says, “That's not what I see!” The preschooler must change her hypothesis about points of view. A child who is so focused on counting to learn addition, can skip the step later in adding 2 + 3 and can later grab groups of 3's or 2's in multiplication. The grasp has widened from 1 by 1 to three 3's. Later, in algebra (formal operations), the variable x can stand for any number at all.

The teacher must guide (steer wild inventions away from blind alleys) and challenge (contradict to gently point out illogic) and explain (because the child wants and needs explanation for active understanding). According to Piaget, childrendonot discover properlyor efficientlyon their own. Children progress through the same major stages but not at the same rates, depending upon experience and skill of educators, but that is not all that matters. Piaget thus viewed researchers who tried to disprove his theory by showing that younger children could accomplish a task, or who tried to accelerate development with disdain. AlludingtoThorndike and the behaviorist B. F. Skinner, Piaget dismissed this attempt to speed up children's growth as “The American Question” (Bringuier, 1980; general Piaget references: Gruber & Vonèche, 1977, McCarthy Gallagher & Reid, 1981; for the teacher's perspective, see Elkind, 1976, and Duckworth, 1996).